
CSE-491
range-v3 examples

cgnitash@msu.edu

April 1, 2019

1 Introduction

Hopefully, y’all have already watched the ranges talk by Eric Niebler, and are as excited as
I am about how cool it is. However, like most new paradigms, it takes practise to get used
to it. And I have a hunch that ranges are going to be the most radical change ever to how
we code C++, and so below are some problem sets that give some practise with ranges, and
also gives us some concrete examples of usage that we can discuss in class. The problems
are listed in increasing order of difficulty. Actually, this may not be the case for all of you,
so feedback would be great.

2 Simple algorithms

To start off, let’s implement the roulette-wheel selection approach that I posted last week.
There are obviously many different approaches, but here’s a fairly straightforward one.

s t r u c t Agent {
double s co r e = 0 ;
double g e t s c o r e () { r e turn s co r e ; }

} ;

s td : : vector<Agent> r o u l e t t e w h e e l (std : : vector<Agent> &agents ,
i n t new popu la t i on s i z e) {

std : : vector<double> wheel ;
// get a l l the s c o r e s
std : : t rans form (std : : begin (agents) , s td : : end (agents) ,

s td : : b a c k i n s e r t e r (wheel) ,
[] (auto agent) { r e turn agent . g e t s c o r e () ; }) ;

// c r e a t e the r o u l e t t e wheel
std : : pa r t i a l sum (std : : begin (wheel) , s td : : end (wheel) ,

s td : : begin (wheel)) ;

1

// ’ wheel ’ has the n i c e property that a randomly generated
// double w i l l f a l l on an index o f wheel , with a p r o b a b i l i t y
// p ro po r t i ona l to the f i t n e s s o f an agent at that index .
// (Sketch an example to see that) .
// O(n) complexity

// c r e a t e the random spinner , and uni formly d i s t r i b u t e d t i p
std : : mt19937 sp inner ;
s td : : u n i f o r m r e a l d i s t r i b u t i o n <double> t i p (0 , wheel . back ()) ;

// c roup i e r sp in s the wheel and s e l e c t s an agent
// every c a l l to t h i s func t i on w i l l s e l e c t an agent
// f i t n e s s−p r o p o r t i o n a t e l y
// O(log (n)) complexity
auto c roup i e r = [&] {

r e turn agents [s td : : d i s t anc e (
std : : begin (wheel) ,
s td : : lower bound (std : : begin (wheel) , s td : : end (wheel) ,

t i p (sp inner)))] ;
} ;

// c r oup i e r sp in s the wheel N times to generate next populat ion
// O(n . l og (n)) complexity
std : : vector<Agent> next agent s ;
s td : : g ene ra te n (std : : b a c k i n s e r t e r (next agent s) ,

new popu la t i on s i z e , c r oup i e r) ;

r e turn next agent s ;
}

Notice, no explicit loops, or conditionals. Convert this implementation to one that uses
ranges. There are several advantages that can be had

1. improved legibility with not having to say .end(), and .begin()

2. projection functions to reduce lambda boilerplate

3. piping to improve legibility

4. not needing to name variables unnecessarily.

5. Also, wheel should be const, which is not possible without ranges (as far as I can tell).

Try to take advantage of all these points.

2

3 1D Matrix

Here’s a classic; writing a 2D-Matrix class that stores its data in a 1D data structure. We’re
going to push this further, and simply store a view to the data, i.e. the matrix will be a
non-mutable view on data!

#inc lude <range /v3/ a l l . hpp>
#inc lude // a l l nece s sa ry headers
us ing namespace ranges ;

s t r u c t Matrix {

s i z e t rows =0, c o l s =0;
// j u s t any view on i n t s
any view<int> v ;

// d e f a u l t con s t ruc to r j u s t s t o r e s a view to counted i n t s
Matrix (s i z e t rows , s i z e t co l s , s i z e t i n i t)

: rows (rows) , c o l s (c o l s) ,
v (view : : i o t a (i n i t , i n i t + rows ∗ c o l s)) {}

// u s e f u l c on s t ruc to r
Matrix (s i z e t rows , s i z e t co l s , any view<int> av)

: rows (rows) , c o l s (c o l s) , v (av) {}

// I ’ l l w r t i t e the easy one :)
Matrix operator+(Matrix m) {

a s s e r t (rows == m. rows) ;
a s s e r t (c o l s == m. c o l s) ;
r e turn { rows , c o l s ,

view : : z i p w i th (std : : plus<int >{} , v , m. v) } ;
}

// return a transposed matrix
// the ranges t a l k uses i n t e r l e a v e () , which i s not a part o f
// the range−v3 l i b r a r y , but t h i s i s not d i f f i c u l t to wr i t e
// f o r the case when we know both dimensions
// h int : check out view : : s t r i d e
Matrix t r () {

// . . .
}

// t h i s might take some work !
Matrix operator ∗(Matrix m) {

3

a s s e r t (c o l s == m. rows) ;
// . . .

} ;

i n t main () {
auto m1 = Matrix (3 , 4 , 1) ;
s td : : cout << m1. v ;

any view<int> v = view : : i o t a (100 , 112) ;
auto m2 = Matrix (3 , 4 , v) ;
s td : : cout << m2. v ;

auto m3 = m1 + m2;
std : : cout << m3. v ;

// . . .
// Try other matrix ope ra t i on s
// Try d e s c r i b i n g some common matr ices ,
// e . g . use view : : s l i d e to c r e a t e the i d e n t i t y matrix
}

Try implementing the functions mentioned above. This is just a taste of how much of a
change ranges is going to be.

4 Patterns

When I first learned programming, a large component of the first semester was drawing
patterns, e.g.

> ./a.out 4

*

**

> ./a.out 4

dcba

cba

ba

a

,etc. I’m sure you get the idea. A lot of us disliked this, because we didn’t see the point of it
(who needs to draw so many patterns?). Also, we disliked it even more, because we had to
write it on paper, not a computer!. However, the purpose of that was to develop familiarity
with loop structures. In that regard at least, it served its purpose; I can write a for-loop

4

without really thinking too hard about the loop conditions. In the same vein, here’s some
pattern practise with ranges. Write a program that generates the following pattern

> ./a.out 4

a

a aba a

a aba abcba aba a

a aba abcba abcdcba abcba aba a

a aba abcba aba a

a aba a

a

> ./a.out 5

a

a aba a

a aba abcba aba a

a aba abcba abcdcba abcba aba a

a aba abcba abcdcba abcdedcba abcdcba abcba aba a

a aba abcba abcdcba abcba aba a

a aba abcba aba a

a aba a

a

The pattern should be clear. I assume everyone can write the loops necessary to draw it,
and can also see that it would be quite fiddly. Implement this program without using any
explicit loops, or conditionals. In fact, if you try hard, you should be able to do this without
any ranges::actions or ranges algorithms, but only using ranges::views. If you try really hard,
you could do this without strings at all (except when printing to the screen; I couldn’t find
a way around it). Obviously, don’t try solving the whole problem at once; build it up piece
by piece (correct by construction, as Eric puts it in his talk).

5

	Introduction
	Simple algorithms
	1D Matrix
	Patterns

