

Investigating the Relationship S Between Plasticity and Evolvability in a Genetic Regulatory Network Model

Math/CS Day

Matthew Moreno mamoreno@pugetsound.edu April 29th, 2017 Background

Evolutionary Algorithm: Example

Figure 1: Evolution in Action [Cheney et al., 2013]

Evolutionary Algorithm: Problem Statement

What makes an evolutionary algorithm work?

consensus: the amount of viable variation generated by the evolutionary process

- evolvability as the amount of novel variation generated
- evolvability the proportion of variation that is viable

Evolvability as Novel Variation

(a) high individual evolvability

(b) low individual evolvability

Figure 2: An illustration of individual evolvability, considering evolvability as heritable variation [Wilder and Stanley, 2015].

Evolvability as Bias towards Viable Variation

Figure 3: Illustration of robustness; high evolvability left and low evolvability right [Downing, 2015].

Objectives

Environmental Influence on the Phenotype

- in biology, genotype not sole determinant of phenotype
- P = G + E
- plasticity: phenotypic response to the environment
- how does environmental influence on the phenotype affect evolvability?

Motivation: Practical and Scientific

Figure 4: A spacecraft antenna design generated using evolutionary methods [Hornby et al., 2006, Figure 2(a)].

Figure 5: A biological frond design generated via evolution.

Genetic Regulatory Network Model

Model Framework

Figure 6: Chemical concentrations are represented as a list of boolean values.

Figure 7: The GRN genotype is a set of if-then rules that acts on a set of chemical concentrations. The model employed was inspired by [Wilder and Stanley, 2015].

Model Framework

(a) biological inspiration

(b) genetic regulatory network model

Figure 8: A comparison of the genetic regulatory network model and its biological inspiration.

Model Implementation

- model implemented through DEAP (Distributed Evolutionary Algorithms in Python) framework [Fortin et al., 2012]
- experiments performed and analyzed on remote clusters using Jupyter notebook

Experiment: Direct Plasticity

Direct Plasticity: Biological Intuition

Figure 9: A cartoon illustration of resistance to environmental perturbation.

Direct Plasticity: Initial State Perturbation

(b) control scheme

Figure 10: A comparison of the control and experimental schemes employed to investigate the relationship between direct plasticity and evolvability.

Mutational Outcome Frequencies

Figure 11: Comparison of mutational outcome frequencies for champions evolved with and without initial state perturbation.

Experiment: Indirect Plasticity

Indirect Plasticity: Biological Intuition

Figure 12: A cartoon illustration of alternate phenotypes expressed based on environmental signals.

Indirect Plasticity: Conditional Initial State

Figure 13: A comparison of the control and experimental schemes employed to investigate the relationship between indirect plasticity and evolvability.

Mutational Outcome Frequencies

Figure 14: Comparison of mutational outcome frequencies for champions evolved with only primary condition/objective pair versus with both primary and secondary condition/objective pairs.

Experiment: Combined Plasticity

Combined Plasticity: Conditional Initial State with Perturbation

Figure 15: A comparison of the control and experimental schemes employed to investigate the relationship between combined plasticity and evolvability.

Mutational Outcome Frequencies

Figure 16: Comparison of mutational outcome frequencies for champions evolved with only primary condition/objective pair and no initial state perturbation versus with both primary and secondary condition/objective pairs and initial state perturbation.

Analysis

big idea: internal system configuration determines the outcomes of change to the system

Analysis

- environmental noise \rightarrow noise mitigation structures \rightarrow more silent mutations
- alternate phenotypic targets \rightarrow developmental path switching structures \rightarrow fewer silent mutations
- environmental noise and alternate phenotypic targets $\rightarrow \dots \rightarrow$ more nonlethal, expressed mutations

Closing Thoughts

Closing Thoughts: Challenges and Reflection

- data management
 - save data trial-wise instead of batch-wise
 - $\cdot \,$ export to standard format
- Jupyter notebooks
 - write frequently used analysis functions into package
- \cdot compute time
 - seek grant funding for more stable compute environment

- more directly biologically-inspired model
- attempt to demonstrate situation where search with plasticity outperforms search without

Acknowledgements

- DEAP [Fortin et al., 2012]
- Professor Richards for leading CS capstone
- Professor Chiu and Chili Johnson for lending me compute time
- Professors Smith and Chambers for serving as my thesis committee

Questions?

References I

Cheney, N., Maccurdy, R., Clune, J., and Lipson, H. (2013). Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding.

Downing, K. L. (2015).

Intelligence emerging : adaptivity and search in evolving neural systems.

MIT Press, Palatino.

Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M., and Gagné, C. (2012).

DEAP: Evolutionary Algorithms Made Easy.

Journal of Machine Learning Research, 13:2171–2175.

📔 Ha, D. (2015).

Neurogram.

References II

Hornby, G. S., Globus, A., Linden, D. S., and Lohn, J. D. (2006). Automated Antenna Design with Evolutionary Algorithms. *AIAA Space*, pages 19–21.

Mengistu, H., Lehman, J., and Clune, J. (2016). Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It. GECCO Proceedings.

 Nguyen, A., Yosinski, J., and Clune, J. (2015).
 Innovation Engines: Automated Creativity and Improved Stochastic Optimization via Deep Learning.
 In Proceedings of the Genetic and Evolutionary Computation Conference, Madrid.

References III

- Reisinger, J. and Miikkulainen, R. (2007).
 Acquiring Evolvability through Adaptive Representations.
 GECCO'07 Proceedings.
- Sandrini, M. P. B. and Piskur, J. (2005).
 Deoxyribonucleoside kinases: two enzyme families catalyze the same reaction.

Trends in biochemical sciences, 30(5):225–8.

- Tarapore, D. and Mouret, J. B. (2015).
 Evolvability signatures of generative encodings: Beyond standard performance benchmarks.
 Information Sciences.
- Wilder, B. and Stanley, K. (2015).
 Reconciling explanations for the evolution of evolvability.
 Adaptive Behavior, 23(3):171–179.